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Real time simulations?

•spectral function, decay rates

•real time response → nonequilibrium

•nonequilbirum field theory without

•Rayleigh-Jeans problem (classical)

•Gauge dependence problems

•could we simulate a heavy ion collision?

(short period of time: a few fm/c would be enough)

Daydreams...
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 →stochastic quantization techniques



Stochastic quantization Parisi, Wu 1981

∂ϑφ(x,ϑ) = − δSE [φ]
δφ(x,ϑ)

+ η(x,ϑ) 〈η(x1,ϑ1)η(x2,ϑ2)〉 = 2δ(ϑ1 − ϑ2)δ(4)(x1 − x2)

φ(ϑ + ε) = φ(ϑ)− ε
∂SE

∂φ
+
√

2εξ 〈ξ2〉 = 1 random number

Huffel, Rumpf 1984
Gozzi 1984

which admits the complex stationary solution

Pξ[ϕ] = P c
ξ [ϕ] ∼ eiSξ[ϕ] . (31)

However, for ξ "= 1 this solution is complex and Pξ[ϕ] cannot be interpreted
as a probability distribution.

It is important to note that possible solutions of (29) will not be real in
general. For instance, for a real scalar field theory with Minkowskian action
S[ϕ] the equation (29) will generate complex field values for ϑ > 0. For a
complex field

ϕ(t,x) = ϕR(t,x) + iϕI(t,x) (32)

also the conjugate momenta π(t,x) or, with (10), the respective noise

η(t,x) = ηR(t,x) + iηI(t,x) (33)

can be complex. Equation (29) may then be written as

ϕ′
R(t,x) = ϕR(t,x) − ε Iξ(ϕR, ϕI ; t,x) +

√
ε ηR(t,x) ,

ϕ′
I(t,x) = ϕI(t,x) + ε Rξ(ϕR, ϕI ; t,x) +

√
ε ηI(t,x) , (34)

where

Rξ(ϕR, ϕI ; t,x) ≡ Re

(
δSξ[ϕ]

δϕ(t,x)

∣∣∣
ϕ=ϕR+iϕI

)
,

Iξ(ϕR, ϕI ; t,x) ≡ Im

(
δSξ[ϕ]

δϕ(t,x)

∣∣∣
ϕ=ϕR+iϕI

)
. (35)

Eq. (34) has to be interpreted as a stochastic process for two independent real
field components ϕR(t,x) and ϕI(t,x). Most importantly, the analyticity in
ϕ = ϕR + iϕI , which was tacitly assumed in writing (30), is not obtained.
We will see that this is a consequence of the fact that the noise cannot be
implemented with an analytic dependence on η = ηR + iηI . We will also
see that the stochastic process (34) may be associated to a real distribution
Pξ[ϕR, ϕI ] which cannot be written as a function of ϕ = ϕR + iϕI .

Writing again Pξ(ϑn+1) → P ′
ξ and Pξ(ϑn) → Pξ the evolution of the

distribution can be obtained from

P ′
ξ[ϕ

′
R, ϕ′

I ] =

〈 ∫
[dϕR][dϕI ]Pξ[ϕR, ϕI ]

∏

t,x

δ
(
ϕ′

R(t,x) − ϕR(t,x) + εIξ(ϕR, ϕI ; t,x) −
√

εηR(t,x)
)

∏

t,x

δ
(
ϕ′

I(t,x) − ϕI(t,x) − εRξ(ϕR, ϕI ; t,x) −
√

εηI(t,x)
)〉

η

. (36)
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∂P [ϕR,ϕI ]
∂ϑ

=
∫

d4x

[
δ(PI)
δϕR

− δ(PR)
δϕI

+
δ2P

δϕ2
R

]
Real Fokker-Planck equation

Klauder 1984



Reweighting vs. Stochastic quantization

∫
DΦeiSR[Φ]−SI [Φ]Φ(t1)Φ(t2) =

∫
DΦe−SI [φ]

[
eiSR[Φ]Φ(t1)Φ(t2)

]

Action in Minkowski time: no importance sampling.

Cost of simulation: ~ exp(volume)

Reweighting

Performance compared to stochastic quantization
Callaway at al. (1985)

Stochastic quantization (in real time)

Analytical continuation of the distribution!
Strict argument for convergence in free theory.
Thermalization time? Convergence? Precision test?



The real field becomes complex

〈O〉ϑ =
∫

[dϕR][dϕI ]O(ϕR + iϕI)P (ϕR,ϕI ,ϑ)

〈O〉ϑ =
∫

[dϕR][dϕI ]O(ϕR)Peff(ϕR,ϑ)

Peff(ϕR,ϑ)→ eiS[ϕR]

Real time observables:

Tre−βĤ φ̂eiHtφ̂e−iHt

Trρ̂φ̂eiĤtφ̂e−iĤt

Real time equilibrium:

Contour?

Lattice in Minkowski
space-time:

needs a small regulator 

boudary conditions?

initial conditions?

m2 − iε
→

Peff(ϕR,ϑ) =
∫

[dϕI ]P (ϕR − iϕI ,ϕI ,ϑ)



CTP → Complex Time Path
real-time

right

equilateral

asymmetric

cosine

−iS = − i

2

∑

j

(φj+1 − φj)2

Cj+1 − Cj
+

i

2

∑

j

(Cj+1 − Cj) (V [φ(Cj+1] + V [φ(Cj)])

∂φ(Cj)
∂ϑ

= i
∂S

∂φ(Cj)
+ ηj(ϑ) Contour points: Cj

Respects gauge symmetry!

Real time

Euclidean time

Langevin equation:



Harmonic Oscillator:
φj ≡ φ(Cj)−iS[φ] =

1
2
φiMijφj M : complex symmetric matrix

Eigenvalues depend on the contour shape.
The tilt of the contour acts as regulator.

Klauder 1984, Nakazato&Yamanaka 1985

∂ϑφi = −Mijφj + ηi

Eigensystem: !ψa (orthogonal), eigenvalues λa (complex)φi =
∑

a

zaψi
a

Re < z2 >→ Re1/λ
Im < z2 >→ Im1/λ

< z2 > −1/λ ∼ e−2λt

Converges if Re λ > 0
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Langevin evolution

single dof Langevin

λ-1= 1
λ-1= 1+1i
λ-1=0.1+1i

Complex eigenvalue:

damped oscillation around the limit

Field theory: summing over modes
“Prethermalization”: 
accelerates convergence 

〈z4〉0 = 3〈z2〉0

∂ϑza = −λaza + η′
a



Free field: analytically accessable
Nakazato&Yamanaka 1985

ε small real part
of the eigenvalue

FP Hamiltonian

Peff(ϕR,ϑ) =
∫

[dϕI ]P (ϕR − iϕI ,ϕI ,ϑ)

λk = ε− iq



Free field: analytically accessable
Nakazato&Yamanaka 1985

ε small real part
of the eigenvalue

FP Hamiltonian

Peff(ϕR,ϑ) =
∫

[dϕI ]P (ϕR − iϕI ,ϕI ,ϑ)

〈φ(x)φ(y)〉0 = 〈zazb〉0ψa
xψb

y =
δab

λa
ψa

xψb
y =

∑

a

1
λa

ψa
xψa

y

Perturbative progagator:

=
[
G−1

0 (x, y)
]−1

ψa
x: eigenfunctions of G−1

0 (x, y)

λk = ε− iq



∆t=0.0
∆t=0.5
∆t=1.0
∆t=2.0
∆t=4.0

Contour shapes
and eigenvalues

Real time
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Im

The real part of the eigenvalues are always positive 
if there is a tilt, no matter how small
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Long time contour: many small eigenvalues

Time discretization (N):
small N: inaccurate reproduction of
large N: smaller eigenvalues

[
G−1

0 (x, y)
]−1



-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

<x
(0

)x
(t)

>

t

simulated Re
simulated Im

exact Re
exact Im

Short time intervals

Results independent of 
real-time span of the grid 
until a certain limit

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1  1.2

Im
 <

x(
0)

x(
t)>

t

real time span
∆t=0.1
∆t=0.5
∆t=0.6
∆t=0.8
∆t=1.0
∆t=1.2

〈φ(0)φ(t)〉 t = 0 . . .∆t

Δt

Schrodinger’s exact
result on the contour



A precision test: Extracting damping rate
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γ/ω < 2% accuracy 40%

∼ cos(ωt)e−γtFitting

Requires precision data

Possible improvements:
statistical analysis based on the 
correlation matrix
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At lower temperature: longer intervals
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Field theory:
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Trρ̂φ̂eiĤtφ̂e−iĤtNonequilibrium:

The contour:

ρ̂
Tilt: regulator.
(modified initial 
condition and 
more damping)

interacting theory if (and only if) the time interval is short enough. In runs
with longer contour (il1) the problem reappears.

The two-point function converges to the wrong value: 〈φ(ti)φ(ti)〉 = 2
(instead of 1). No wonder, this prescritpion is principally nonsense, since in
the trace

Tr ρ0O(t = 0)U(tf )U
−1(tf ) (10)

the UU−1 factor (as well as the summation over their indices) is missing.
The contour is never closed, i.e. φ− and φ+ are not connected.

3.4 Gaussian IC put into the action

We are interested in the exceptation value of an observable A(t), which can
be easily written in real time formalism as

〈A(t)〉 = Tr ρA(t)

=
∫

dφ+dφ−ρ(φ−, φ+)
∫

Dφ−Dφ+eiS[φ+]−iS[φ−]A[φ+] (11)

=
∫

D′φ−D′φ+eiS′[φ+,φ−]A[φ+] . (12)

In the second step we exponentialized the density matrix (trivial for the
Gaussian case). As opposed to Dφ±, the path integral D′φ± includes an
integration over φ±(ti), too. S ′ contains S on the both contour branches as
well as the density operator:

S ′[φ+, φ−] = S[φ+] − S[φ−] +
1

at
S0(φ+(ti), φ−(ti)] (13)

S0[φ+, φ−] = iΦ̇(φ+ − φ−) − σ2 + 1

8ξ2

(
(φ+ − Φ)2 + (φ− − Φ)2

)

+
iη

2ξ

(
(φ+ − Φ)2 − (φ− − Φ)2

)

+
σ2 − 1

4ξ2
(φ+ − Φ)(φ− − Φ) (14)

The parameters here directly correspond to the initial one and two-point
functions:

Φ = 〈φ(ti)〉
Φ̇ =

〈
φ̇(ti)

〉
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Simplest: Gaussian density operator
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8ξ2 = 〈φ(ti)φ(ti)〉c
ηξ =

1

2

〈
φ̇(ti)φ(ti) + φ(ti)φ̇(ti)

〉

c

η2 +
σ2

4ξ2
= 〈φ(ti)φ(ti)〉c (15)

Now one can carries out the Langevin step by updating all the points
including φ±(ti). Strangely, this prescription does not seem to be equivalent
to simulating with fixed φ±(ti), and then averaging the result over an en-
semble of φ±(ti). The difference comes from the derivative ∂S[φ]/∂φ±(ti),
which comes in addition to the standard ∂S0[φ]/∂φ±(ti), which latter gives
the exact values of initial two-point functions. This distortion is controlled
by at, since in Eq. (13) S is suppressed by at.

3.4.1 Free oscillator

Setting initial condition: 〈φ〉 = 1,
〈
φ̇

〉
= 0, 〈φφ〉c = 1, 〈ππ〉c = 0.25
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exact solution

3.4.2 No shoot-up in the interacting case

Results (dm21) show that there is no shootup in the interacting theory if
we follow the prescription for Gaussian initial condition sketched above (λ =
1). We also observe a statistically significant imaginary part of the field
exceptation value, which is forbidden by the hermiticity of the field operator.

9

Field theory: 
Fourier transformation in each 
Langevin time step



In practice:
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Stochastic quantization:
 real time simulations are indeed possible,

 
•Direct simulation on short intervals so far

(longer at low temperature or weak coupling)

•For statistical estimate of  real time correlators: 
more relevant information than Euclidean 
simulation may provide.

• Early nonequilibrium behaviour (instabilities)

real-time

right

equilateral

asymmetric

cosine

φi 〈φiφj〉


